Tail Dependence of Multivariate Pareto Distributions
نویسنده
چکیده
Various multivariate Pareto distributions are known to exhibit the heavy tail behaviors. This paper examines the tail dependence properties of a general class of multivariate Pareto distributions with the Pareto index and some common scale parameters. The multivariate tail dependence describes the amount of dependence in the upper-orthant tail or lower-orthant tail of a multivariate distribution and can be used in the study of dependence among extreme values. We derive the explicit expressions of tail dependencies of the multivariate Pareto distributions and related copulas of Archimedean type. Properties of the tail dependence coefficients are discussed and some examples are presented to illustrate our results.
منابع مشابه
Extremal Dependence of Multivariate Distributions and Its Applications
ii I certify that I have read this dissertation and certify that in my opinion it is fully adequate, in scope and in quality, as a dissertation for the degree of Doctor of Philosophy. Stochastic dependence arises in many fields including electrical grid reliability, net-work/internet traffic analysis, environmental and agricultural impact assessment, and financial risk management. Models in the...
متن کاملTail Approximation of Value-at-Risk under Multivariate Regular Variation
This paper presents a general tail approximation method for evaluating the Valueat-Risk of any norm of random vectors with multivariate regularly varying distributions. The main result is derived using the relation between the intensity measure of multivariate regular variation and tail dependence function of the underlying copula, and in particular extends the tail approximation discussed in E...
متن کاملHessian Stochastic Ordering in the Family of multivariate Generalized Hyperbolic Distributions and its Applications
In this paper, random vectors following the multivariate generalized hyperbolic (GH) distribution are compared using the hessian stochastic order. This family includes the classes of symmetric and asymmetric distributions by which different behaviors of kurtosis in skewed and heavy tail data can be captured. By considering some closed convex cones and their duals, we derive some necessary and s...
متن کاملAsymptotic Analysis of Multivariate Tail Conditional Expectations
Tail conditional expectations refer to the expected values of random variables conditioning on some tail events and are closely related to various coherent risk measures. In the univariate case, the tail conditional expectation is asymptotically proportional to the value-at-risk, a popular risk measure. The focus of this paper is on asymptotic relations between the multivariate tail conditional...
متن کاملTail Dependence for Heavy-Tailed Scale Mixtures of Multivariate Distributions
The tail dependence of multivariate distributions is frequently studied via the tool of copulas. This paper develops a general method, which is based on multivariate regular variation, to evaluate the tail dependence of heavy-tailed scale mixtures of multivariate distributions, whose copulas are not explicitly accessible. Tractable formulas for tail dependence parameters are derived, and a suff...
متن کامل